1 Integrating Term by Term

Theorem 1 Consider the power series

\[f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad |z| < R (R \neq 0) \]

Let \(C \) be a simple piecewise smooth curve which lies inside the circle of convergence. Then we can **integrate the power series term by term**:

\[\int_C \left(\sum_{n=0}^{\infty} a_n z^n \right) \, dz = \sum_{n=0}^{\infty} a_n \int_C z^n \, dz \quad (1) \]

Proof. The function \(f(z) \) defined by the power series is continuous on \(C \), so the integrals in (1) are well-defined. We need to show that

\[\lim_{n \to \infty} \left| \int_C \left[f(z) - \sum_{k=0}^{n} a_k z^k \right] \, dz \right| = 0 \quad (2) \]

Since \(C \) lies inside the circle of convergence, the series converges uniformly on \(C \) to \(f(z) \). For any \(\epsilon \), there is an \(N(\epsilon) \) so that, for all \(z \) on \(C \),

\[n \geq N(\epsilon) \Rightarrow \left| f(z) - \sum_{k=0}^{n} a_k z^k \right| < \epsilon \]

By the triangle inequality for integrals and the above inequalities, for \(n \geq N \),

\[\left| \int_C \left[f(z) - \sum_{k=0}^{n} a_k z^k \right] \, dz \right| \leq \epsilon \cdot \text{(length of } C) \]

Since \(\epsilon \) is arbitrary, the limit in (2) is zero. \(\blacksquare \)