
1 A small test of the wrapfig package

LATEX provides three models for the placement of graphics, in line, displayed,
or floating. None of these models allows text to flow around a graphics. The
wrapfig package adds functionality which allows text to flow around graphics.
There is not an interface to the wrapfig package in SW, but encapsulated TeX
fields around an in line graphics object can provide the necessary instructions to
LATEX. See a sample below. The first TeX field contains \begin{wrapfigure}{i}{0in}
which starts the area around which text will wrap, specifies that the graphics
should be on the inside margin when a twoside typesetting style is used, and
uses the actual width of the graphics as the width to wrap text around. You can
change {0in} to a specific value to control the wrap width. The second TeX field
contains a caption; it can be omitted if you do not want the graphics automat-
ically numbered and labeled. The third TeX field contains \end{wrapfigure}
which ends the area around which text will wrap. The documentation for the
wrapfig package can be found at the end of the package file, wrapfig.sty, that
you can find in the directory TCITeX\TeX\latex\contrib\misc.
Here we cross refer to the graphic in Fig.1.
The rest of this document contains some sample text taken from The Myth-

ical Man-Month by Frederick P. Brooks, Jr.
Why is programming fun? What delights may its practitioner expect as his

reward?
First is the sheer joy of making things. As the child delights in his mud

pie, so the adult enjoys building things, especially things of his own design. I
think this delight must be an image of God’s delight in making things, a delight
shown in the distinctness and newness of each leaf and each snowflake.

Figure 1: A sample 3D plot.

Second is the pleasure of making things that
are useful to other people. Deep within, we want
others to use our work and to find it helpful. In
this respect the programming system is not es-
sentially different from the child’s first clay pencil
holder “for Daddy’s offi ce.”
Third is the fascination of fashioning complex

puzzle-like objects of interlocking moving parts
and watching them work in subtle cycles, playing
out the consequences of principles built in from the
beginning. The programmed computer has all the
fascination of the pinball machine or the jukebox
mechanism, carried to the ultimate.

Fourth is the joy of always learning, which springs from the nonrepeating
nature of the task. In one way or another the problem is ever new, and its solver
learns something: sometimes practical, sometimes theoretical, and sometimes
both.
Finally, there is the delight of working in such a tractable medium. The

programmer, like the poet, works only slightly removed from pure thought-stuff.
He builds his castles in the air from air, creating by exertion of the imagination.

1


